基于似然比方法的三维夹持痕迹检验研究

Research on Three Dimensional Clamping Trace Inspection Based on Likelihood Ratio Method

传播影响力
本库下载频次:
本库浏览频次:
CNKI下载频次:0

归属院系:

刑事侦查学院

作者:

曾盼

导师:

张翠玲

导师单位:

刑事侦查学院

学位:

硕士

语种:

中文

关键词:

似然比, 夹持痕迹, 3D测量, 定量, 证据评价

摘要:

长期以来,夹持痕迹鉴定作为工具痕迹检验鉴定的重要组成部分,在司法审判中发挥着协助案件事实认定的重要作用。在盗窃案件或者破坏通信电缆案件中,现场往往会遗留钢丝钳工具的夹持痕迹,根据夹持痕迹检验鉴定得出的确定性意见极可能被夸大或低估了其证据强度。现行鉴定方法主要依赖光学比较显微镜下的形态学比对,通过目视观察比较形成的“肯定同一”或“否定同一”的结论,往往带有较强的主观性和经验性,由此容易导致证据强度评估的偏差,鉴定意见的绝对化表述也可能放大或弱化证据的价值。基于贝叶斯定理的似然比评价方法是一种创新、客观的法庭科学证据评价方法,能够较好地弥补鉴定人主观检验鉴定的不足,能够对工具痕迹证据进行更加科学客观的评价和评估,通过量化数据评估证据价值,给出支持起诉假设或是辩护假设的强度。本研究旨在探索似然比证据评价方法应用到夹持痕迹鉴定领域的可能性,以期探索更为科学客观的夹持痕迹鉴定评价范式,进而推动痕迹鉴定从经验判断向数字概率化评估的范式转型。本文由引言和正文的五个部分组成。引言部分主要介绍了研究背景、目的、意义以及国内外研究现状。该部分着重阐述了似然比方法对夹持痕迹等工具痕迹鉴定意见准确性的影响,旨在引入科学的工具痕迹鉴定证据评价模式,并分析了基于似然比方法的工具痕迹鉴定证据评价研究的理论意义和实践意义。此外,引言还对国内外工具痕迹证据评价模式的研究现状进行了梳理,重点介绍了似然比方法在工具痕迹证据评价研究中的研究成果。第一部分是夹持痕迹检验概述。该部分主要介绍了夹持痕迹在入室盗窃案件和破坏电信设备案件等案件中出现概率较高。同时,详细阐述了夹持痕迹形成的理论基础、痕迹特征、检验原理以及3D检验方法。第二部分是似然比的理论体系。该部分主要阐述了似然比的概念、定义、表达式,以及其在夹持类工具痕迹证据中的应用。同时,介绍了基于似然比方法的系统性能评价指标。第三部分是基于似然比方法的夹持痕迹检验的实验设计。实验步骤包括实验样本制作、样本提取和测量、数据统计处理、曲面比较和截面比较。实验样本制作方法采用了打样膏制模法,依次将20把钢丝钳压印在打样膏上制成20个夹持痕迹模型。样本提取和测量采用了GOM三维扫描量测系统和GOM inspect软件分析测量,并运用SPSS软件对测量数据进行统计学处理。该部分还重点介绍了GOM测量仪器设备的构造、组成以及功能应用,详细阐述了利用GOM inspect软件测量夹持痕迹的方法步骤,并介绍了GOM仪器设备在夹持类工具痕迹检验当中的具体应用场景,主要包括曲面比较和截面比较应用场景。第四部分是实验结果与讨论。将实验结果分为齿间距特征的验证测试结果、齿高的验证测试结果、齿宽的验证测试结果、融合特征系统的验证测试结果,并对这四类测试结果进行分析比对,比较其系统识别性能。第五部分是总结和展望。对实验结果进行归纳总结,综合评价了本文的技术方法以及夹持痕迹的参数特征在侦查实践中的应用价值,并对其未来应用进行展望。

参考文献:

一、中文参考文献 (一)著作类1.张翠玲.法庭语音技术研究[M].北京:中国社会出版社,2009.2.河南理工大学概率论与数理统计教研组.概率论与数理统计[M].北京:高等教育出版社,2013.3.张书杰.工具痕迹学[M].北京:中国人民大学公安大学出版社.2002.2.4.缪晨光.工具及枪弹痕迹检验的理论与实践[M].北京:中国人民公安大学出版社.20195.郑杰编.SPSS统计分析从入门到精通[M].北京:中国铁道出版社,2015.6.欧洲法庭科学研究机构联盟:《欧洲法庭科学研究机构联盟法庭科学评价报告指南》,王元凤,刘世权译,北京:中国人民大学出版社:2021年版。(二)论文类7.谭铁君,尹缘,钱可,等.钳具咬合角三维特征提取及定量化检验[J].中国刑警学院学报,2022,(06):95-100.8.谭铁君,刘明星.基于似然比方法的弹壳击针头3D痕迹检验研究[J].中国人民公安大学学报(自然科学版),2022,28(03):1-8.9.谭铁君,刘明星,祁柘,等.斜口钳刃侧3D特征的定量化检验[J].中国刑警学院学报,2021,(03):107-114.10.谭铁君,李智,杨溢,等.基于光学3D测量技术的钳具刃侧加工特征实验研究[J].中国人民公安大学学报(自然科学版),2019,25(02):12-21.11.隋文浩,王伟.三维图像在工具与枪弹痕迹中的应用现状分析[J].科技创新与应用,2022,12(34):37-4012.马晓贇.三维激光扫描及3D打印技术在工具痕迹提取检验中的应用[J].警察技术,2018,(01):37-40.13.邓建波,胡国红.三维激光扫描点云数据处理与应用技术浅析[J].世界有色金属,2021,(07):204-205.14.王华朋, 许锋. 论法庭证据评估体系的发展[J]. 证据科学, 2014, 22(1): 56-63.15.张翠玲, 王勇. 物证鉴定科学范式转变背景下的同一认定理论[J]. 证据科学, 2023,31(3): 359-371.16.陈福鼎.似然比在钢丝钳钳剪痕迹比对中的可行性探究[J].清远职业技术学院学报,2022,15(02):50-55.17.张翠玲.论法庭证据评估及鉴定意见表述[J].中国人民公安大学学报(自然科学版),2017,23(01):41-46.18.董锋,罗亚平,赵雅彬,等.基于似然比方法的法庭证据评估[J].数理统计与管理,2021,40(01):15-25.19.张翠玲,谭铁君.基于贝叶斯统计推理的法庭证据评价[J].刑事技术,2018,43(04):265-271.20.张翠玲.论法庭证据评估及鉴定意见表述[J].中国人民公安大学学报(自然科学版),2017,23(01):41-46.21.张翠玲.法庭语音证据评价的新范式[J].中国人民公安大学学报(自然科学版),2018,24(01):25-30.22.张翠玲.法庭语音证据评价的范式转变及其进路[J].中国司法鉴定,2023,(03):86-95.23.葛京伟, 杨阳. 钢丝钳夹持面痕迹形成特点与检验[J]. 刑事技术, 2006(4): 33-35.24.林晓勇. 钢丝钳夹压防盗窗管痕迹的实验研究[J]. 刑事技术, 2008(2): 48-50.25.王震, 涂海波. 防盗窗破坏方式及其痕迹特征研究[J]. 中国刑警学院学报, 2013(1): 43-46.26.林晓勇. 钢丝钳夹压防盗窗管痕迹的实验研究[J]. 刑事技术, 2008(2): 48-50.27.厉翔. 夹持类工具夹持痕迹特征的研究[J]. 黑龙江科技信息, 2011(19): 44.28.蒋焕. 锁扣破坏方式及其痕迹特征实验研究[J]. 科教导刊(中旬刊), 2018(32): 60-61.29.王震, 叶超. 犯罪现场中防盗保险箱破坏成因分析[J]. 中国刑警学院学报, 2018(4): 109-113.30.葛京伟, 杨阳. 对钢丝钳夹持面痕迹形成特点与检验的探讨[J]. 中国刑警学院学报, 2005(2): 34-36. (三)其它类31.伍君.基于似然比框架的指纹证据评价研究[D].西南政法大学,2021.40-5032.丁盼.LPC倒谱特征在法庭说话人识别中的应用研究[D].西南政法大学,2020.30-4033.国家统计局.公安机关立案的刑事案件[EB/OL].北京,2023.https://data.stats.gov.cn/ easyquery.htm?cn=C01 二、英文参考文献(一)论文类34.MORRISON,STEWART G.Tutorial on logistic-regression calibration and fusion: converting a score to a likelihood ratio[J]. Australian Journal of Forensic Sciences,2013,45( 2) : 173 - 197.35.Brümmer N, Du Preez J. Application-independent evaluation of speaker detection[J]. Computer Speech & Language, 2006, 20(2-3): 230-275.36.Banno A, Masuda T, Ikeuchi K.Three dimensional visualization and comparison of impressions on fired bullets[J]. Forensic science international, 2004, 140(2-3): 233-240.37.Biasotti A A. Criteria for identification or State of the Art of Firearm and Toolmark Identification[J]. AFTE Journal, 1984, 16(4): 16-24.38.BARTHOLDY B P,SANDOVAL E,HOOGLAND M P,et al. Getting rid of dichotomous sex estimations: why logistic regression should be preferred over discriminantfunction analysis[J]. Journal of Forensic Sciences,2020,65: 1685 - 1691.39.Chumbley S, Zhang S, Morris M, et al. Development of a Mobile Toolmark Characterization/Comparison System[J]. Journal of Forensic Sciences, 2017, 62(1): 83-91.40.Baiker M, Pieterman R, Zoon P. Toolmark variability and quality depending on the fundamental parameters: Angle of attack, toolmark depth and substrate material[J]. Forensic Science International, 2015, 251: 40-49.41.Chumbley L S, Morris M D, Kreiser M J, et al. Validation of Tool Mark Comparisons Obtained Using a Quantitative, Comparative, Statistical Algorithm[J]. Journal of Forensic Sciences, 2010, 55(4): 953-961.42.Baiker M, Petraco N D K, Gambino C, et al. Virtual and simulated striated toolmarks for forensic applications[J]. Forensic Science International, 2016, 261: 43-52.43.Ekstrand L, Zhang S, Grieve T, et al. Virtual Tool Mark Generation for Efficient Striation Analysis ,[J]. Journal of Forensic Sciences, 2014, 59(4): 950-959.44.Cuellar M, Gao S, Hofmann H. An algorithm for forensic toolmark comparisons[A]. arXiv, 2024.45.Bunch S, Wevers G. Application of likelihood ratios for firearm and toolmark analysis[J]. Science & Justice, 2013, 53(2): 223-229.46.Baiker-Sørensen M, Alberink I, Granell L B, et al. Automated interpretation of comparison scores for firearm toolmarks on cartridge case primers[J]. Forensic Science International, 2023, 353: 111858.47.Baiker M, Keereweer I, Pieterman R, et al. Quantitative comparison of striated toolmarks[J]. Forensic Science International, 2014, 242: 186-199.48.Chumbley L S, Morris M D, Kreiser M J, et al. Validation of Tool Mark Comparisons Obtained Using a Quantitative, Comparative, Statistical Algorithm[J]. Journal of Forensic Sciences, 2010, 55(4): 953-961.49.Murdock J E, Petraco N D K, Thornton J I, et al. The Development and Application of Random Match Probabilities to Firearm and Toolmark Identification[J]. Journal of Forensic Sciences, 2017, 62(3): 619-625.50.Brooks E, Prusinowski M, Gross S, et al. Forensic physical fits in the trace evidence discipline: A review[J]. Forensic Science International, 2020, 313: 110349.51.Zhang N F. Statistical models for firearm and tool mark image comparisons based on the congruent matching cells (CMC) method[J]. Forensic Science International, 2021, 326: 110912.52.Patteet J-A, Champod C. Striated toolmarks comparison and reporting methods: Review and perspectives[J]. Forensic Science International, Elsevier BV, 2024, 357: 111997.53.Murdock J E, Petraco N D K, Thornton J I, et al. The Development and Application of Random Match Probabilities to Firearm and Toolmark Identification[J]. Journal of Forensic Sciences, 2017, 62(3): 619-625.54.Petraco N D K, Chan H, Peter R, et al. Document Title: Application of Machine Learning to Toolmarks: Statistically Based Methods for Impression Pattern Comparisons[J].Journal of Forensic Sciences,2012,63(2):510-520.55.BRUMMER N,PREEZ J D.Application-independent evaluation of speaker detection[J]. Computer Speech &Language,2006,20( 2 -3) : 230-275(二)其它类56.Del Valle A W. Bayesian Approach to Toolmark Analysis[D]. City University of New York John Jay College of Criminal Justice, 2017.57.Grieve T N. Objective analysis of toolmarks in forensics[D].Iowa State University Program of Study Committee,2013.

学科:

侦查学

提交日期

2025-07-01

引用参考

曾盼. 基于似然比方法的三维夹持痕迹检验研究[D]. 西南政法大学,2025.

全文附件授权许可

知识共享许可协议-署名

  • dc.title
  • 基于似然比方法的三维夹持痕迹检验研究
  • dc.title
  • Research on Three Dimensional Clamping Trace Inspection Based on Likelihood Ratio Method
  • dc.contributor.schoolno
  • 20220301Z31093
  • dc.contributor.author
  • 曾盼
  • dc.contributor.affiliation
  • 刑事侦查学院
  • dc.contributor.degree
  • 硕士
  • dc.contributor.childdegree
  • 法学硕士学位
  • dc.contributor.degreeConferringInstitution
  • 西南政法大学
  • dc.identifier.year
  • 2025
  • dc.contributor.direction
  • 侦查学
  • dc.contributor.advisor
  • 张翠玲
  • dc.contributor.advisorAffiliation
  • 刑事侦查学院
  • dc.language.iso
  • 中文
  • dc.subject
  • 似然比,夹持痕迹,3D测量,定量,证据评价
  • dc.subject
  • likelihood ratio; clamping traces; 3D measurements; quantification; evidence evaluation
  • dc.description.abstract
  • 长期以来,夹持痕迹鉴定作为工具痕迹检验鉴定的重要组成部分,在司法审判中发挥着协助案件事实认定的重要作用。在盗窃案件或者破坏通信电缆案件中,现场往往会遗留钢丝钳工具的夹持痕迹,根据夹持痕迹检验鉴定得出的确定性意见极可能被夸大或低估了其证据强度。现行鉴定方法主要依赖光学比较显微镜下的形态学比对,通过目视观察比较形成的“肯定同一”或“否定同一”的结论,往往带有较强的主观性和经验性,由此容易导致证据强度评估的偏差,鉴定意见的绝对化表述也可能放大或弱化证据的价值。基于贝叶斯定理的似然比评价方法是一种创新、客观的法庭科学证据评价方法,能够较好地弥补鉴定人主观检验鉴定的不足,能够对工具痕迹证据进行更加科学客观的评价和评估,通过量化数据评估证据价值,给出支持起诉假设或是辩护假设的强度。本研究旨在探索似然比证据评价方法应用到夹持痕迹鉴定领域的可能性,以期探索更为科学客观的夹持痕迹鉴定评价范式,进而推动痕迹鉴定从经验判断向数字概率化评估的范式转型。本文由引言和正文的五个部分组成。引言部分主要介绍了研究背景、目的、意义以及国内外研究现状。该部分着重阐述了似然比方法对夹持痕迹等工具痕迹鉴定意见准确性的影响,旨在引入科学的工具痕迹鉴定证据评价模式,并分析了基于似然比方法的工具痕迹鉴定证据评价研究的理论意义和实践意义。此外,引言还对国内外工具痕迹证据评价模式的研究现状进行了梳理,重点介绍了似然比方法在工具痕迹证据评价研究中的研究成果。第一部分是夹持痕迹检验概述。该部分主要介绍了夹持痕迹在入室盗窃案件和破坏电信设备案件等案件中出现概率较高。同时,详细阐述了夹持痕迹形成的理论基础、痕迹特征、检验原理以及3D检验方法。第二部分是似然比的理论体系。该部分主要阐述了似然比的概念、定义、表达式,以及其在夹持类工具痕迹证据中的应用。同时,介绍了基于似然比方法的系统性能评价指标。第三部分是基于似然比方法的夹持痕迹检验的实验设计。实验步骤包括实验样本制作、样本提取和测量、数据统计处理、曲面比较和截面比较。实验样本制作方法采用了打样膏制模法,依次将20把钢丝钳压印在打样膏上制成20个夹持痕迹模型。样本提取和测量采用了GOM三维扫描量测系统和GOM inspect软件分析测量,并运用SPSS软件对测量数据进行统计学处理。该部分还重点介绍了GOM测量仪器设备的构造、组成以及功能应用,详细阐述了利用GOM inspect软件测量夹持痕迹的方法步骤,并介绍了GOM仪器设备在夹持类工具痕迹检验当中的具体应用场景,主要包括曲面比较和截面比较应用场景。第四部分是实验结果与讨论。将实验结果分为齿间距特征的验证测试结果、齿高的验证测试结果、齿宽的验证测试结果、融合特征系统的验证测试结果,并对这四类测试结果进行分析比对,比较其系统识别性能。第五部分是总结和展望。对实验结果进行归纳总结,综合评价了本文的技术方法以及夹持痕迹的参数特征在侦查实践中的应用价值,并对其未来应用进行展望。
  • dc.description.abstract
  • For a long time, the clamping trace identification as an important part of the tool trace examination and identification, in the judicial trial to play an important role in assisting the determination of the facts of the case. In the case of theft or sabotage of communications cables, the scene will often be left in the clamping traces of steel wire pliers tools, according to the clamping traces test identification of certainty is very likely to be exaggerated or underestimated the strength of its evidence. The current identification method mainly relies on optical comparison microscope under the morphological comparison, through visual observation and comparison of the formation of the “certainly the same” or “deny the same” conclusion, often with a strong subjectivity and empirical, which is likely to lead to the strength of the evidence to assess the bias, the absolutization of the identification opinion. Bias, appraisal opinion of the absolute expression may also amplify or weaken the value of the evidence. Likelihood ratio evaluation method based on Bayes' theorem is an innovative and objective method of scientific evidence evaluation in court, which can better make up for the lack of subjective test appraisal of appraisal by appraisers, and can provide a more scientific and objective evaluation and assessment of tool-trace evidence, and assess the value of the evidence through quantitative data, and give the strength of the evidence in support of prosecution hypotheses or defense hypotheses. The purpose of this study is to explore the likelihood ratio evidence evaluation method applied to the field of clamped trace identification, in order to explore a more scientific and objective evaluation paradigm of clamped trace identification, and then promote the trace identification from empirical judgment to the paradigm transition of digital probabilistic assessment.This paper consists of five parts of the introduction and the main text.The introduction part mainly introduces the research background, purpose, significance and the current status of research at home and abroad. The part focuses on the impact of the likelihood ratio method on the accuracy of the identification opinions of toolmarks such as clamping marks, aims to introduce a scientific toolmark identification evidence evaluation model, and analyzes the theoretical significance and practical significance of the research on the evaluation of toolmark identification evidence based on the likelihood ratio method. In addition, the introduction also compiles the current research status of tool trace evidence evaluation model at home and abroad, and focuses on the research results of the likelihood ratio method in tool trace evidence evaluation research.The first part is an overview of the clamping trace test. This part mainly introduces the high probability of clamping traces in cases such as burglary cases and cases of destruction of telecommunications equipment. At the same time, the theoretical basis for the formation of clamping traces, trace characteristics, inspection principles and 3D inspection methods are described in detail.The second part is the theoretical system of likelihood ratio. This part mainly describes the concept, definition, expression of the likelihood ratio, and its application in the evidence of clamped tool traces. Meanwhile, the system performance evaluation index based on the likelihood ratio method is introduced.The third part is the experimental design of the clamping trace test based on the likelihood ratio method. The experimental steps include experimental sample production, sample extraction and measurement, data statistical processing, surface comparison and cross-section comparison. The experimental sample production method adopted the proofing paste modeling method, in which 20 wire pliers were sequentially embossed on the proofing paste to make 20 clamping trace models. Sample extraction and measurement were performed using the GOM 3D scanning measurement system and GOM inspect software to analyze the measurements, and SPSS software was used to statistically process the measurement data. This part also focuses on the structure, composition and functional application of GOM measuring instruments and equipment, elaborates in detail the methodological steps of measuring clamping traces with GOM inspect software, and introduces the specific application scenarios of GOM instrumentation and equipment in the inspection of traces of clamping tools, mainly including the surface comparison and cross-section comparison application scenarios.The fourth part is the experimental results and discussion. The experimental results are categorized into validation test results of tooth spacing features, validation test results of tooth height, validation test results of tooth width, and validation test results of fusion feature system, and these four types of test results are analyzed and compared to compare their system recognition performance.The fifth part is the summary and outlook. The experimental results are summarized, and the technical method of this paper as well as the parametric characteristics of the clamping traces are comprehensively evaluated for their application value in the investigation practice, and their future applications are prospected.
  • dc.date.issued
  • 2025-05-30
  • dc.date.oralDefense
  • 2025-05-24
  • dc.relation.citedreferences
  • 一、中文参考文献 (一)著作类1.张翠玲.法庭语音技术研究[M].北京:中国社会出版社,2009.2.河南理工大学概率论与数理统计教研组.概率论与数理统计[M].北京:高等教育出版社,2013.3.张书杰.工具痕迹学[M].北京:中国人民大学公安大学出版社.2002.2.4.缪晨光.工具及枪弹痕迹检验的理论与实践[M].北京:中国人民公安大学出版社.20195.郑杰编.SPSS统计分析从入门到精通[M].北京:中国铁道出版社,2015.6.欧洲法庭科学研究机构联盟:《欧洲法庭科学研究机构联盟法庭科学评价报告指南》,王元凤,刘世权译,北京:中国人民大学出版社:2021年版。(二)论文类7.谭铁君,尹缘,钱可,等.钳具咬合角三维特征提取及定量化检验[J].中国刑警学院学报,2022,(06):95-100.8.谭铁君,刘明星.基于似然比方法的弹壳击针头3D痕迹检验研究[J].中国人民公安大学学报(自然科学版),2022,28(03):1-8.9.谭铁君,刘明星,祁柘,等.斜口钳刃侧3D特征的定量化检验[J].中国刑警学院学报,2021,(03):107-114.10.谭铁君,李智,杨溢,等.基于光学3D测量技术的钳具刃侧加工特征实验研究[J].中国人民公安大学学报(自然科学版),2019,25(02):12-21.11.隋文浩,王伟.三维图像在工具与枪弹痕迹中的应用现状分析[J].科技创新与应用,2022,12(34):37-4012.马晓贇.三维激光扫描及3D打印技术在工具痕迹提取检验中的应用[J].警察技术,2018,(01):37-40.13.邓建波,胡国红.三维激光扫描点云数据处理与应用技术浅析[J].世界有色金属,2021,(07):204-205.14.王华朋, 许锋. 论法庭证据评估体系的发展[J]. 证据科学, 2014, 22(1): 56-63.15.张翠玲, 王勇. 物证鉴定科学范式转变背景下的同一认定理论[J]. 证据科学, 2023,31(3): 359-371.16.陈福鼎.似然比在钢丝钳钳剪痕迹比对中的可行性探究[J].清远职业技术学院学报,2022,15(02):50-55.17.张翠玲.论法庭证据评估及鉴定意见表述[J].中国人民公安大学学报(自然科学版),2017,23(01):41-46.18.董锋,罗亚平,赵雅彬,等.基于似然比方法的法庭证据评估[J].数理统计与管理,2021,40(01):15-25.19.张翠玲,谭铁君.基于贝叶斯统计推理的法庭证据评价[J].刑事技术,2018,43(04):265-271.20.张翠玲.论法庭证据评估及鉴定意见表述[J].中国人民公安大学学报(自然科学版),2017,23(01):41-46.21.张翠玲.法庭语音证据评价的新范式[J].中国人民公安大学学报(自然科学版),2018,24(01):25-30.22.张翠玲.法庭语音证据评价的范式转变及其进路[J].中国司法鉴定,2023,(03):86-95.23.葛京伟, 杨阳. 钢丝钳夹持面痕迹形成特点与检验[J]. 刑事技术, 2006(4): 33-35.24.林晓勇. 钢丝钳夹压防盗窗管痕迹的实验研究[J]. 刑事技术, 2008(2): 48-50.25.王震, 涂海波. 防盗窗破坏方式及其痕迹特征研究[J]. 中国刑警学院学报, 2013(1): 43-46.26.林晓勇. 钢丝钳夹压防盗窗管痕迹的实验研究[J]. 刑事技术, 2008(2): 48-50.27.厉翔. 夹持类工具夹持痕迹特征的研究[J]. 黑龙江科技信息, 2011(19): 44.28.蒋焕. 锁扣破坏方式及其痕迹特征实验研究[J]. 科教导刊(中旬刊), 2018(32): 60-61.29.王震, 叶超. 犯罪现场中防盗保险箱破坏成因分析[J]. 中国刑警学院学报, 2018(4): 109-113.30.葛京伟, 杨阳. 对钢丝钳夹持面痕迹形成特点与检验的探讨[J]. 中国刑警学院学报, 2005(2): 34-36. (三)其它类31.伍君.基于似然比框架的指纹证据评价研究[D].西南政法大学,2021.40-5032.丁盼.LPC倒谱特征在法庭说话人识别中的应用研究[D].西南政法大学,2020.30-4033.国家统计局.公安机关立案的刑事案件[EB/OL].北京,2023.https://data.stats.gov.cn/ easyquery.htm?cn=C01 二、英文参考文献(一)论文类34.MORRISON,STEWART G.Tutorial on logistic-regression calibration and fusion: converting a score to a likelihood ratio[J]. Australian Journal of Forensic Sciences,2013,45( 2) : 173 - 197.35.Brümmer N, Du Preez J. Application-independent evaluation of speaker detection[J]. Computer Speech & Language, 2006, 20(2-3): 230-275.36.Banno A, Masuda T, Ikeuchi K.Three dimensional visualization and comparison of impressions on fired bullets[J]. Forensic science international, 2004, 140(2-3): 233-240.37.Biasotti A A. Criteria for identification or State of the Art of Firearm and Toolmark Identification[J]. AFTE Journal, 1984, 16(4): 16-24.38.BARTHOLDY B P,SANDOVAL E,HOOGLAND M P,et al. Getting rid of dichotomous sex estimations: why logistic regression should be preferred over discriminantfunction analysis[J]. Journal of Forensic Sciences,2020,65: 1685 - 1691.39.Chumbley S, Zhang S, Morris M, et al. Development of a Mobile Toolmark Characterization/Comparison System[J]. Journal of Forensic Sciences, 2017, 62(1): 83-91.40.Baiker M, Pieterman R, Zoon P. Toolmark variability and quality depending on the fundamental parameters: Angle of attack, toolmark depth and substrate material[J]. Forensic Science International, 2015, 251: 40-49.41.Chumbley L S, Morris M D, Kreiser M J, et al. Validation of Tool Mark Comparisons Obtained Using a Quantitative, Comparative, Statistical Algorithm[J]. Journal of Forensic Sciences, 2010, 55(4): 953-961.42.Baiker M, Petraco N D K, Gambino C, et al. Virtual and simulated striated toolmarks for forensic applications[J]. Forensic Science International, 2016, 261: 43-52.43.Ekstrand L, Zhang S, Grieve T, et al. Virtual Tool Mark Generation for Efficient Striation Analysis ,[J]. Journal of Forensic Sciences, 2014, 59(4): 950-959.44.Cuellar M, Gao S, Hofmann H. An algorithm for forensic toolmark comparisons[A]. arXiv, 2024.45.Bunch S, Wevers G. Application of likelihood ratios for firearm and toolmark analysis[J]. Science & Justice, 2013, 53(2): 223-229.46.Baiker-Sørensen M, Alberink I, Granell L B, et al. Automated interpretation of comparison scores for firearm toolmarks on cartridge case primers[J]. Forensic Science International, 2023, 353: 111858.47.Baiker M, Keereweer I, Pieterman R, et al. Quantitative comparison of striated toolmarks[J]. Forensic Science International, 2014, 242: 186-199.48.Chumbley L S, Morris M D, Kreiser M J, et al. Validation of Tool Mark Comparisons Obtained Using a Quantitative, Comparative, Statistical Algorithm[J]. Journal of Forensic Sciences, 2010, 55(4): 953-961.49.Murdock J E, Petraco N D K, Thornton J I, et al. The Development and Application of Random Match Probabilities to Firearm and Toolmark Identification[J]. Journal of Forensic Sciences, 2017, 62(3): 619-625.50.Brooks E, Prusinowski M, Gross S, et al. Forensic physical fits in the trace evidence discipline: A review[J]. Forensic Science International, 2020, 313: 110349.51.Zhang N F. Statistical models for firearm and tool mark image comparisons based on the congruent matching cells (CMC) method[J]. Forensic Science International, 2021, 326: 110912.52.Patteet J-A, Champod C. Striated toolmarks comparison and reporting methods: Review and perspectives[J]. Forensic Science International, Elsevier BV, 2024, 357: 111997.53.Murdock J E, Petraco N D K, Thornton J I, et al. The Development and Application of Random Match Probabilities to Firearm and Toolmark Identification[J]. Journal of Forensic Sciences, 2017, 62(3): 619-625.54.Petraco N D K, Chan H, Peter R, et al. Document Title: Application of Machine Learning to Toolmarks: Statistically Based Methods for Impression Pattern Comparisons[J].Journal of Forensic Sciences,2012,63(2):510-520.55.BRUMMER N,PREEZ J D.Application-independent evaluation of speaker detection[J]. Computer Speech &Language,2006,20( 2 -3) : 230-275(二)其它类56.Del Valle A W. Bayesian Approach to Toolmark Analysis[D]. City University of New York John Jay College of Criminal Justice, 2017.57.Grieve T N. Objective analysis of toolmarks in forensics[D].Iowa State University Program of Study Committee,2013.
回到顶部